Auditory spatial resolution in horizontal, vertical, and diagonal planes

Minimum audible angle (MAA) and minimum audible movement angle (MAMA) thresholds were measured for stimuli in horizontal, vertical, and diagonal (60 degrees) planes. A pseudovirtual technique was employed in which signals were recorded through KEMAR's ears and played back to subjects through in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2003-08, Vol.114 (2), p.1009-1022
Hauptverfasser: Grantham, D Wesley, Hornsby, Benjamin W Y, Erpenbeck, Eric A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Minimum audible angle (MAA) and minimum audible movement angle (MAMA) thresholds were measured for stimuli in horizontal, vertical, and diagonal (60 degrees) planes. A pseudovirtual technique was employed in which signals were recorded through KEMAR's ears and played back to subjects through insert earphones. Thresholds were obtained for wideband, high-pass, and low-pass noises. Only 6 of 20 subjects obtained wideband vertical-plane MAAs less than 10 degrees, and only these 6 subjects were retained for the complete study. For all three filter conditions thresholds were lowest in the horizontal plane, slightly (but significantly) higher in the diagonal plane, and highest for the vertical plane. These results were similar in magnitude and pattern to those reported by Perrott and Saberi [J. Acoust. Soc. Am. 87, 1728-1731 (1990)] and Saberi and Perrott [J. Acoust. Soc. Am. 88, 2639-2644 (1990)], except that these investigators generally found that thresholds for diagonal planes were as good as those for the horizontal plane. The present results are consistent with the hypothesis that diagonal-plane performance is based on independent contributions from a horizontal-plane system (sensitive to interaural differences) and a vertical-plane system (sensitive to pinna-based spectral changes). Measurements of the stimuli recorded through KEMAR indicated that sources presented from diagonal planes can produce larger interaural level differences (ILDs) in certain frequency regions than would be expected based on the horizontal projection of the trajectory. Such frequency-specific ILD cues may underlie the very good performance reported in previous studies for diagonal spatial resolution. Subjects in the present study could apparently not take advantage of these cues in the diagonal-plane condition, possibly because they did not externalize the images to their appropriate positions in space or possibly because of the absence of a patterned visual field.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.1590970