Cardiopulmonary bypass reduces peripheral microvascular contractile function by inhibition of mitogen-activated protein kinase activity
Background. Mitogen-activated protein kinases (MAPK) have been implicated in pathophysiologic responses to cardiopulmonary bypass (CPB). MAPK are deactivated by phosphatases, such as MAPK phosphatase-1 (MKP-1). We hypothesized that MAPK mediate peripheral microvascular contractile dysfunction caused...
Gespeichert in:
Veröffentlicht in: | Surgery 2003-08, Vol.134 (2), p.247-254 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background. Mitogen-activated protein kinases (MAPK) have been implicated in pathophysiologic responses to cardiopulmonary bypass (CPB). MAPK are deactivated by phosphatases, such as MAPK phosphatase-1 (MKP-1). We hypothesized that MAPK mediate peripheral microvascular contractile dysfunction caused by CPB in humans. Methods. Skeletal muscle was harvested before and after CPB. Protein levels of MKP-1 and activated extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 were measured. MKP-1 gene expression was measured. Peripheral microvessel responses to vasopressors were studied by videomicroscopy. Contractile function also was measured after MAPK inhibition with PD98059 (ERK1/2) and SB203580 (p38). ERK1/2, p38, and MKP-1 were localized by immunohistochemistry and in situ hybridization. Results. ERK1/2 and p38 activity was decreased in peripheral tissue after CPB. MKP-1 was increased after CPB. Contractile responses of peripheral arterioles to phenylephrine and vasopressin were decreased after CPB. Microvessel reactivity also was reduced after treatment with PD98059 and SB203580. ERK1/2, p38, and MKP-1 localized to peripheral arterioles in tissue sections. Conclusion. CPB reduces ERK1/2 and p38 activity in peripheral tissue, potentially by MKP-1. Contractile responses of peripheral arterioles to phenylephrine and vasopressin are dependent on ERK1/2 and p38 and are decreased after CPB. These results suggest that alterations in MAPK pathways in part regulate peripheral microvascular dysfunction after CPB in humans. (Surgery 2003;134:247-54.) |
---|---|
ISSN: | 0039-6060 1532-7361 |
DOI: | 10.1067/msy.2003.229 |