Transgene delivery of plasmid DNA to smooth muscle cells and macrophages from a biostable polymer-coated stent

Metallic stents coated with a polyurethane emulsion containing plasmid DNA were implanted in rabbit iliac arteries to evaluate transgene delivery and expression in the vessel wall. The expression of the plasmid-encoded marker genes, β-galactosidase, luciferase and green fluorescence protein (GFP), w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2003-08, Vol.10 (17), p.1471-1478
Hauptverfasser: Takahashi, A, Palmer-Opolski, M, Smith, R C, Walsh, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metallic stents coated with a polyurethane emulsion containing plasmid DNA were implanted in rabbit iliac arteries to evaluate transgene delivery and expression in the vessel wall. The expression of the plasmid-encoded marker genes, β-galactosidase, luciferase and green fluorescence protein (GFP), were evaluated at 7 days after implantation. In all cases, plasmid transfer was confined to the vessel wall at the site of stent implantation, plasmid DNA was not observed in vessel segments immediately proximal or distal to the stent and dissemination of plasmid DNA to lung, liver or spleen was not observed. Expression of transgenes occurred only in vessel segments in contact with the stent and analysis of the GFP expression pattern revealed a high frequency of marker protein-positive cells occurring at or near the luminal surface. The extent of transgene expression was dependent upon the quantity of DNA loaded onto the stent and no signal was detected in vessel segments that received polymer-coated stents lacking plasmid DNA. Of significance, colocalization studies identified transgene expression not only in vascular smooth muscle cells but also in macrophages. Hence, polymer-coated stents provide a new capability for transgene delivery to immune cells that are believed to contribute to the development of in-stent restenosis.
ISSN:0969-7128
1476-5462
DOI:10.1038/sj.gt.3302010