Ab-initio prediction and reliability of protein structural genomics by PROPAINOR algorithm

We have formulated the ab-initio prediction of the 3D-structure of proteins as a probabilistic programming problem where the inter-residue 3D-distances are treated as random variables. Lower and upper bounds for these random variables and the corresponding probabilities are estimated by nonparametri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational biology and chemistry 2003-07, Vol.27 (3), p.241-252
Hauptverfasser: Joshi, Rajani R., Jyothi, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have formulated the ab-initio prediction of the 3D-structure of proteins as a probabilistic programming problem where the inter-residue 3D-distances are treated as random variables. Lower and upper bounds for these random variables and the corresponding probabilities are estimated by nonparametric statistical methods and knowledge-based heuristics. In this paper we focus on the probabilistic computation of the 3D-structure using these distance interval estimates. Validation of the predicted structures shows our method to be more accurate than other computational methods reported so far. Our method is also found to be computationally more efficient than other existing ab-initio structure prediction methods. Moreover, we provide a reliability index for the predicted structures too. Because of its computational simplicity and its applicability to any random sequence, our algorithm called PROPAINOR (PROtein structure Prediction by AI an Nonparametric Regression) has significant scope in computational protein structural genomics.
ISSN:1476-9271
1476-928X
DOI:10.1016/S0097-8485(02)00074-8