Comparison of High-Field Asymmetric Waveform Ion Mobility Spectrometry with GC Methods in Analysis of Haloacetic Acids in Drinking Water
Haloacetic acids (HAAs) are major byproducts of chlorination of drinking water. Electrospray ionization high-field asymmetric waveform ion mobility spectrometry mass spectrometry (ESI-FAIMS−MS) provides a tool for direct monitoring of these compounds. However, treated drinking water samples can be c...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2003-05, Vol.75 (10), p.2478-2486 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Haloacetic acids (HAAs) are major byproducts of chlorination of drinking water. Electrospray ionization high-field asymmetric waveform ion mobility spectrometry mass spectrometry (ESI-FAIMS−MS) provides a tool for direct monitoring of these compounds. However, treated drinking water samples can be challenging to analyze due to the large number of chemicals present and due to matrix effects that can hinder quantitation of analytes. We developed a standard addition ESI-FAIMS−MS method that permits submicrogram per liter detection of haloacetic acids and overcomes matrix effects. An advantage of FAIMS is increased selectivity through a significant reduction in the chemical background from ESI. Moreover, detection limits with this method are much lower than with previously existing GC and GC/MS methods, and quantitation results compare favorably with other existing methods. This new method does not require sample preparation or chromatographic separation and provides a fast, simple, sensitive, and selective method for monitoring HAAs. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac026466c |