Mechanisms controlling the sensitivity of the Limulus lateral eye in natural lighting
Electroretinograms were recorded from the horseshoe crab compound eye using a high-intensity light-emitting diode and a whole-eye seawater electrode. Recordings were made from both lateral eyes in natural daylight or in continuous darkness with the optic nerve intact or cut. Recordings from two eyes...
Gespeichert in:
Veröffentlicht in: | Journal of Comparative Physiology 2003-08, Vol.189 (8), p.643-653 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 653 |
---|---|
container_issue | 8 |
container_start_page | 643 |
container_title | Journal of Comparative Physiology |
container_volume | 189 |
creator | Pieprzyk, A R Weiner, W W Chamberlain, S C |
description | Electroretinograms were recorded from the horseshoe crab compound eye using a high-intensity light-emitting diode and a whole-eye seawater electrode. Recordings were made from both lateral eyes in natural daylight or in continuous darkness with the optic nerve intact or cut. Recordings from two eyes of the same animal in different conditions facilitated direct comparisons of the effects of diurnal lighting and circadian efferent activity on the daily patterns of sensitivity of the eye. Structural changes appear to account for about half of the total electroretinogram excursion. Circadian input begins about 45 min in advance of sunset and the nighttime sensitivity returns to the daytime values 20 min after sunrise. When the optic nerve is cut, the nighttime sensitivity shows exponential decay over the next 5 or 6 days, consistent with a light-triggered structural light adaptation process unopposed by efferent input. Our results suggest that two mechanisms mediate the increase in lateral eye sensitivity at night-physiological dark adaptation and circadian efferent input. Three mechanisms appear to be involved in mediating the decrease in lateral eye sensitivity during daylight-physiological light adaptation, a continuous structural light adaptation process, and a separate light-triggered, efferent-primed structural light adaptation process. |
doi_str_mv | 10.1007/s00359-003-0437-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73564303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084373261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-dd31ab87386837e572cd3c175a9f1f5dfc6df75203e36433ce94b5b14ae8c95c3</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxYMotlY_gBdZPHiLJplkkz2K-A8qXuw5pNlsm5LdrZus0G_vri0IXry8YYbfezA8hC4puaWEyLtICIgCD4oJB4nVEZpSDgxTEPQYTQlwgqUo-ASdxbghhDDK6CmaUKaY5IxP0eLN2bVpfKxjZtsmdW0Ivlllae2y6Jrok__yaZe11c9p7us-9DELJrnOhMztXOabrDGpH9fgV-s02M_RSWVCdBeHOUOLp8ePhxc8f39-fbifYwtCJFyWQM1SSVC5AumEZLYES6UwRUUrUVY2LyspGAEHOQewruBLsaTcOGULYWGGbva526797F1MuvbRuhBM49o-agli8BH4F6QF47mQI3j9B9y0fdcMT-icQq6EKPIBonvIdm2Mnav0tvO16XaaEj02o_fN6EH12IxWg-fqENwva1f-Og5VwDdUeYk1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>613685596</pqid></control><display><type>article</type><title>Mechanisms controlling the sensitivity of the Limulus lateral eye in natural lighting</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Pieprzyk, A R ; Weiner, W W ; Chamberlain, S C</creator><creatorcontrib>Pieprzyk, A R ; Weiner, W W ; Chamberlain, S C</creatorcontrib><description>Electroretinograms were recorded from the horseshoe crab compound eye using a high-intensity light-emitting diode and a whole-eye seawater electrode. Recordings were made from both lateral eyes in natural daylight or in continuous darkness with the optic nerve intact or cut. Recordings from two eyes of the same animal in different conditions facilitated direct comparisons of the effects of diurnal lighting and circadian efferent activity on the daily patterns of sensitivity of the eye. Structural changes appear to account for about half of the total electroretinogram excursion. Circadian input begins about 45 min in advance of sunset and the nighttime sensitivity returns to the daytime values 20 min after sunrise. When the optic nerve is cut, the nighttime sensitivity shows exponential decay over the next 5 or 6 days, consistent with a light-triggered structural light adaptation process unopposed by efferent input. Our results suggest that two mechanisms mediate the increase in lateral eye sensitivity at night-physiological dark adaptation and circadian efferent input. Three mechanisms appear to be involved in mediating the decrease in lateral eye sensitivity during daylight-physiological light adaptation, a continuous structural light adaptation process, and a separate light-triggered, efferent-primed structural light adaptation process.</description><identifier>ISSN: 0340-7594</identifier><identifier>EISSN: 1432-1351</identifier><identifier>DOI: 10.1007/s00359-003-0437-8</identifier><identifier>PMID: 12827424</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Adaptation, Psychological - physiology ; Adaptation, Psychological - radiation effects ; Animals ; Circadian Rhythm - physiology ; Crustaceans ; Electroretinography - methods ; Eye - radiation effects ; Eyes & eyesight ; Horseshoe Crabs - physiology ; Light ; Limulus ; Marine ; Ocular Physiological Phenomena - radiation effects ; Retina ; Sensitivity and Specificity ; Sensory Thresholds - physiology</subject><ispartof>Journal of Comparative Physiology, 2003-08, Vol.189 (8), p.643-653</ispartof><rights>Springer-Verlag 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-dd31ab87386837e572cd3c175a9f1f5dfc6df75203e36433ce94b5b14ae8c95c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12827424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pieprzyk, A R</creatorcontrib><creatorcontrib>Weiner, W W</creatorcontrib><creatorcontrib>Chamberlain, S C</creatorcontrib><title>Mechanisms controlling the sensitivity of the Limulus lateral eye in natural lighting</title><title>Journal of Comparative Physiology</title><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><description>Electroretinograms were recorded from the horseshoe crab compound eye using a high-intensity light-emitting diode and a whole-eye seawater electrode. Recordings were made from both lateral eyes in natural daylight or in continuous darkness with the optic nerve intact or cut. Recordings from two eyes of the same animal in different conditions facilitated direct comparisons of the effects of diurnal lighting and circadian efferent activity on the daily patterns of sensitivity of the eye. Structural changes appear to account for about half of the total electroretinogram excursion. Circadian input begins about 45 min in advance of sunset and the nighttime sensitivity returns to the daytime values 20 min after sunrise. When the optic nerve is cut, the nighttime sensitivity shows exponential decay over the next 5 or 6 days, consistent with a light-triggered structural light adaptation process unopposed by efferent input. Our results suggest that two mechanisms mediate the increase in lateral eye sensitivity at night-physiological dark adaptation and circadian efferent input. Three mechanisms appear to be involved in mediating the decrease in lateral eye sensitivity during daylight-physiological light adaptation, a continuous structural light adaptation process, and a separate light-triggered, efferent-primed structural light adaptation process.</description><subject>Adaptation, Psychological - physiology</subject><subject>Adaptation, Psychological - radiation effects</subject><subject>Animals</subject><subject>Circadian Rhythm - physiology</subject><subject>Crustaceans</subject><subject>Electroretinography - methods</subject><subject>Eye - radiation effects</subject><subject>Eyes & eyesight</subject><subject>Horseshoe Crabs - physiology</subject><subject>Light</subject><subject>Limulus</subject><subject>Marine</subject><subject>Ocular Physiological Phenomena - radiation effects</subject><subject>Retina</subject><subject>Sensitivity and Specificity</subject><subject>Sensory Thresholds - physiology</subject><issn>0340-7594</issn><issn>1432-1351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU9LAzEQxYMotlY_gBdZPHiLJplkkz2K-A8qXuw5pNlsm5LdrZus0G_vri0IXry8YYbfezA8hC4puaWEyLtICIgCD4oJB4nVEZpSDgxTEPQYTQlwgqUo-ASdxbghhDDK6CmaUKaY5IxP0eLN2bVpfKxjZtsmdW0Ivlllae2y6Jrok__yaZe11c9p7us-9DELJrnOhMztXOabrDGpH9fgV-s02M_RSWVCdBeHOUOLp8ePhxc8f39-fbifYwtCJFyWQM1SSVC5AumEZLYES6UwRUUrUVY2LyspGAEHOQewruBLsaTcOGULYWGGbva526797F1MuvbRuhBM49o-agli8BH4F6QF47mQI3j9B9y0fdcMT-icQq6EKPIBonvIdm2Mnav0tvO16XaaEj02o_fN6EH12IxWg-fqENwva1f-Og5VwDdUeYk1</recordid><startdate>200308</startdate><enddate>200308</enddate><creator>Pieprzyk, A R</creator><creator>Weiner, W W</creator><creator>Chamberlain, S C</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>200308</creationdate><title>Mechanisms controlling the sensitivity of the Limulus lateral eye in natural lighting</title><author>Pieprzyk, A R ; Weiner, W W ; Chamberlain, S C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-dd31ab87386837e572cd3c175a9f1f5dfc6df75203e36433ce94b5b14ae8c95c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptation, Psychological - physiology</topic><topic>Adaptation, Psychological - radiation effects</topic><topic>Animals</topic><topic>Circadian Rhythm - physiology</topic><topic>Crustaceans</topic><topic>Electroretinography - methods</topic><topic>Eye - radiation effects</topic><topic>Eyes & eyesight</topic><topic>Horseshoe Crabs - physiology</topic><topic>Light</topic><topic>Limulus</topic><topic>Marine</topic><topic>Ocular Physiological Phenomena - radiation effects</topic><topic>Retina</topic><topic>Sensitivity and Specificity</topic><topic>Sensory Thresholds - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pieprzyk, A R</creatorcontrib><creatorcontrib>Weiner, W W</creatorcontrib><creatorcontrib>Chamberlain, S C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Comparative Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pieprzyk, A R</au><au>Weiner, W W</au><au>Chamberlain, S C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms controlling the sensitivity of the Limulus lateral eye in natural lighting</atitle><jtitle>Journal of Comparative Physiology</jtitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><date>2003-08</date><risdate>2003</risdate><volume>189</volume><issue>8</issue><spage>643</spage><epage>653</epage><pages>643-653</pages><issn>0340-7594</issn><eissn>1432-1351</eissn><abstract>Electroretinograms were recorded from the horseshoe crab compound eye using a high-intensity light-emitting diode and a whole-eye seawater electrode. Recordings were made from both lateral eyes in natural daylight or in continuous darkness with the optic nerve intact or cut. Recordings from two eyes of the same animal in different conditions facilitated direct comparisons of the effects of diurnal lighting and circadian efferent activity on the daily patterns of sensitivity of the eye. Structural changes appear to account for about half of the total electroretinogram excursion. Circadian input begins about 45 min in advance of sunset and the nighttime sensitivity returns to the daytime values 20 min after sunrise. When the optic nerve is cut, the nighttime sensitivity shows exponential decay over the next 5 or 6 days, consistent with a light-triggered structural light adaptation process unopposed by efferent input. Our results suggest that two mechanisms mediate the increase in lateral eye sensitivity at night-physiological dark adaptation and circadian efferent input. Three mechanisms appear to be involved in mediating the decrease in lateral eye sensitivity during daylight-physiological light adaptation, a continuous structural light adaptation process, and a separate light-triggered, efferent-primed structural light adaptation process.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>12827424</pmid><doi>10.1007/s00359-003-0437-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-7594 |
ispartof | Journal of Comparative Physiology, 2003-08, Vol.189 (8), p.643-653 |
issn | 0340-7594 1432-1351 |
language | eng |
recordid | cdi_proquest_miscellaneous_73564303 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adaptation, Psychological - physiology Adaptation, Psychological - radiation effects Animals Circadian Rhythm - physiology Crustaceans Electroretinography - methods Eye - radiation effects Eyes & eyesight Horseshoe Crabs - physiology Light Limulus Marine Ocular Physiological Phenomena - radiation effects Retina Sensitivity and Specificity Sensory Thresholds - physiology |
title | Mechanisms controlling the sensitivity of the Limulus lateral eye in natural lighting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20controlling%20the%20sensitivity%20of%20the%20Limulus%20lateral%20eye%20in%20natural%20lighting&rft.jtitle=Journal%20of%20Comparative%20Physiology&rft.au=Pieprzyk,%20A%20R&rft.date=2003-08&rft.volume=189&rft.issue=8&rft.spage=643&rft.epage=653&rft.pages=643-653&rft.issn=0340-7594&rft.eissn=1432-1351&rft_id=info:doi/10.1007/s00359-003-0437-8&rft_dat=%3Cproquest_cross%3E2084373261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=613685596&rft_id=info:pmid/12827424&rfr_iscdi=true |