Mechanisms controlling the sensitivity of the Limulus lateral eye in natural lighting

Electroretinograms were recorded from the horseshoe crab compound eye using a high-intensity light-emitting diode and a whole-eye seawater electrode. Recordings were made from both lateral eyes in natural daylight or in continuous darkness with the optic nerve intact or cut. Recordings from two eyes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Comparative Physiology 2003-08, Vol.189 (8), p.643-653
Hauptverfasser: Pieprzyk, A R, Weiner, W W, Chamberlain, S C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electroretinograms were recorded from the horseshoe crab compound eye using a high-intensity light-emitting diode and a whole-eye seawater electrode. Recordings were made from both lateral eyes in natural daylight or in continuous darkness with the optic nerve intact or cut. Recordings from two eyes of the same animal in different conditions facilitated direct comparisons of the effects of diurnal lighting and circadian efferent activity on the daily patterns of sensitivity of the eye. Structural changes appear to account for about half of the total electroretinogram excursion. Circadian input begins about 45 min in advance of sunset and the nighttime sensitivity returns to the daytime values 20 min after sunrise. When the optic nerve is cut, the nighttime sensitivity shows exponential decay over the next 5 or 6 days, consistent with a light-triggered structural light adaptation process unopposed by efferent input. Our results suggest that two mechanisms mediate the increase in lateral eye sensitivity at night-physiological dark adaptation and circadian efferent input. Three mechanisms appear to be involved in mediating the decrease in lateral eye sensitivity during daylight-physiological light adaptation, a continuous structural light adaptation process, and a separate light-triggered, efferent-primed structural light adaptation process.
ISSN:0340-7594
1432-1351
DOI:10.1007/s00359-003-0437-8