Persistence of manifolds in nonequilibrium critical dynamics
We study the persistence probability P(t) that, starting from a random initial condition, the magnetization of a d'-dimensional manifold of a d-dimensional spin system at its critical point does not change sign up to time t. For d'>0 we find three distinct late-time decay forms for P(t)...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2003-07, Vol.91 (3), p.030602-030602, Article 030602 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the persistence probability P(t) that, starting from a random initial condition, the magnetization of a d'-dimensional manifold of a d-dimensional spin system at its critical point does not change sign up to time t. For d'>0 we find three distinct late-time decay forms for P(t): exponential, stretched exponential, and power law, depending on a single parameter zeta=(D-2+eta)/z, where D=d-d' and eta,z are standard critical exponents. In particular, we predict that for a line magnetization in the critical d=2 Ising model, P(t) decays as a power law while, for d=3, P(t) decays as a power of t for a plane magnetization but as a stretched exponential for a line magnetization. Numerical results are consistent with these predictions. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.91.030602 |