AMOG/beta2 and glioma invasion: does loss of AMOG make tumour cells run amok?

The beta2 subunit of Na,K-ATPase, initially described as adhesion molecule on glia (AMOG), has been shown to mediate neurone-astrocyte adhesion as well as neural cell migration in vitro. We have investigated the expression of AMOG/beta2 in human gliomas and its effect on glioma cell adhesion and mig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropathology and applied neurobiology 2003-08, Vol.29 (4), p.370-377
Hauptverfasser: Senner, V, Schmidtpeter, S, Braune, S, Püttmann, S, Thanos, S, Bartsch, U, Schachner, M, Paulus, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The beta2 subunit of Na,K-ATPase, initially described as adhesion molecule on glia (AMOG), has been shown to mediate neurone-astrocyte adhesion as well as neural cell migration in vitro. We have investigated the expression of AMOG/beta2 in human gliomas and its effect on glioma cell adhesion and migration. Compared to normal astrocytes of human brain, AMOG/beta2 expression levels of neoplastic astrocytes were down-regulated in biopsy specimens and inversely related to the grade of malignancy. One rat and four human glioma cell lines showed complete loss of AMOG. To investigate the function of AMOG/beta2, its expression was re-established by transfecting an expression plasmid into AMOG/beta2-negative C6 rat glioma cells. In vitro assays revealed increased adhesion and decreased migration on matrigel of AMOG/beta2-positive cells as compared to their AMOG/beta2-negative counterparts. We conclude that increasing loss of AMOG/beta2 during malignant progression parallels and may underlie the extensive invasion pattern of malignant gliomas.
ISSN:0305-1846