The maintenance of hippocampal long-term potentiation is paralleled by a dopamine-dependent increase in glycoprotein fucosylation
Induction of long-term potentiation (LTP) in hippocampal slices of rats caused an increase in both protein synthesis and glycoprotein fucosylation by 38 and 34%, respectively. The enhanced incorporation of [3H]fucose into glycoproteins observed 1 h after tetanization was abolished in the presence of...
Gespeichert in:
Veröffentlicht in: | Neurochemistry international 1992-10, Vol.21 (3), p.403-408 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Induction of long-term potentiation (LTP) in hippocampal slices of rats caused an increase in both protein synthesis and glycoprotein fucosylation by 38 and 34%, respectively. The enhanced incorporation of [3H]fucose into glycoproteins observed 1 h after tetanization was abolished in the presence of the dopamine D1 receptor antagonist SCH23390 during stimulation whereas the LTP-induced increase of protein synthesis was not influenced by this drug. The enhanced insertion of [3H]fucose into hippocampal glycoproteins 1 h after tetanization was paralleled by an increase in the activity of the fucose metabolizing enzyme, fucokinase. In contrast no changes in protein and glycoprotein synthesis were detectable 5 h after tetanization of the slices. The results provide evidence that in addition to an enhanced protein synthesis a dopamine (D1) mediated increase in glycoprotein fucosylation is necessary for the maintenance of the late stage of LTP. |
---|---|
ISSN: | 0197-0186 1872-9754 |
DOI: | 10.1016/0197-0186(92)90191-S |