Positive and Negative Regulation of the γ-Secretase Activity by Nicastrin in a Murine Model
Nicastrin is a component of the γ-secretase complex that has been shown to adhere to presenilin-1 (PS1), Notch, and APP. Here we demonstrate that Nicastrin-deficient mice showed a phenotype that is indistinguishable from PS1/PS2 double knock-out mice, whereas heterozygotes were healthy and viable. F...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2003-08, Vol.278 (35), p.33445-33449 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nicastrin is a component of the γ-secretase complex that has been shown to adhere to presenilin-1 (PS1), Notch, and APP. Here we demonstrate that Nicastrin-deficient mice showed a phenotype that is indistinguishable from PS1/PS2 double knock-out mice, whereas heterozygotes were healthy and viable. Fibroblasts derived from Nicastrin-deficient embryos were unable to generate amyloid β-peptide and failed to release the intracellular domain of APP- or Notch1-Gal4-VP16 fusion proteins. Additionally, C- and N-terminal fragments of PS1 and the C-terminal fragments of PS2 were not detectable in Nicastrin-null fibroblasts, whereas full-length PS1 accumulated in null fibroblasts, indicating that Nicastrin is required for the endoproteolytic processing of presenilins. Interestingly, cells derived from Nicastrin heterozygotes produced relatively higher levels of amyloid β-peptide whether the source was endogenous mouse or transfected human APP. These data demonstrate that Nicastrin is essential for the γ-secretase cleavage of APP and Notch in mammalian cells and that Nicastrin has both positive and negative functions in the regulation of γ-secretase activity. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M301288200 |