The Proteasome as a Lipopolysaccharide-Binding Protein in Macrophages: Differential Effects of Proteasome Inhibition on Lipopolysaccharide-Induced Signaling Events

We have developed a novel LPS probe using a highly purified and homogenous preparation of [(3)H] Escherichia coli LPS from the deep rough mutant, which contains a covalently linked, photoactivable 4-p-(azidosalicylamido)-butylamine group. This cross-linker was used to identify the LPS-binding protei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2003-08, Vol.171 (3), p.1515-1525
Hauptverfasser: Qureshi, Nilofer, Perera, Pin-Yu, Shen, Jing, Zhang, Guochi, Lenschat, Arnd, Splitter, Gary, Morrison, David C, Vogel, Stefanie N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have developed a novel LPS probe using a highly purified and homogenous preparation of [(3)H] Escherichia coli LPS from the deep rough mutant, which contains a covalently linked, photoactivable 4-p-(azidosalicylamido)-butylamine group. This cross-linker was used to identify the LPS-binding proteins in membranes of the murine-macrophage-like cell line RAW 264.7. The alpha-subunit (PSMA1 C2, 29.5 kDa) and the beta-subunit (PSMB4 N3, 24.36 kDa) of the 20S proteasome complex were identified as LPS-binding proteins. This is the first report demonstrating LPS binding to enzymes such as the proteasome subunits. Functionally, LPS enhanced the chymotrypsin-like activity of the proteasome to degrade synthetic peptides in vitro and, conversely, the proteasome inhibitor lactacystin completely blocked the LPS-induced proteasome's chymotrypsin activity as well as macrophage TNF-alpha secretion and the expression of multiple inflammatory mediator genes. Lactacystin also completely blocked the LPS-induced expression of Toll-like receptor 2 mRNA. In addition, lactacystin dysregulated mitogen-activated protein kinase phosphorylation in LPS-stimulated macrophages, but failed to inhibit IL-1 receptor-associated kinase-1 activity. Importantly, lactacystin also prevented LPS-induced shock in mice. These data strongly suggest that the proteasome complex regulates the LPS-induced signal transduction and that it may be an important therapeutic target in Gram-negative sepsis.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.171.3.1515