Mathematical phenomenology of neural stimulation by periodic fields
Neuron synchronization has been hypothesized as the basic mechanism leading neurological phenomena like low electroencephalographic rhythm dimension or high coherence. Cognitive processes, such as associative memory, can also be explained in terms of neuron synchronization. Inspired by the analysis...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics, psychology, and life sciences psychology, and life sciences, 2003-04, Vol.7 (2), p.115-137 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neuron synchronization has been hypothesized as the basic mechanism leading neurological phenomena like low electroencephalographic rhythm dimension or high coherence. Cognitive processes, such as associative memory, can also be explained in terms of neuron synchronization. Inspired by the analysis of an experiment on cortex periodic photostimulation, in resonance conditions, a simple network of integrate and fire (i and f) neurons, has been used to simulate cognitive perturbations by oscillatory and pulsate stimulation of the central nervous system (CNS). In view of realistic simulations of transcranial magnetic stimulation (TMS) phenomena, a discrete extension of the FitzHug-Nagumo nervous fiber model, endowed with regenerative nodes, has been developed too. |
---|---|
ISSN: | 1090-0578 |
DOI: | 10.1023/A:1021460730922 |