Mutations and polymorphisms in the human methyl CpG‐binding protein MECP2

Rett syndrome (RTT or RS) is a neurodevelopmental disorder and one of the most frequent genetic diseases in girls. Mutations of the MECP2 gene have been found in a variety of different RTT phenotypes. The MECP2 gene (Xq28) has been described in 1992. Up to now, 218 different mutations have been repo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human mutation 2003-08, Vol.22 (2), p.107-115
Hauptverfasser: Miltenberger‐Miltenyi, Gabriel, Laccone, Franco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rett syndrome (RTT or RS) is a neurodevelopmental disorder and one of the most frequent genetic diseases in girls. Mutations of the MECP2 gene have been found in a variety of different RTT phenotypes. The MECP2 gene (Xq28) has been described in 1992. Up to now, 218 different mutations have been reported in a total group, of more than 2,100 patients. Mutations in the MECP2 gene are responsible for up to 75% of the classical RTT cases. The mutations, are distributed along the whole gene and are comprised of all types of mutations. Several polymorphisms and benign genetic variants have also been described. Apart from spared reported familial cases, almost all cases are sporadic. RTT syndrome has been considered to be a lethal trait in males. Studying the parental origin of the mutations, however, we and others have found a very high prevalence of de novo mutations on the paternal chromosome. In this work we summarize the mutational reports published until now. One of our aims was to check the mutations' descriptions for consistency and particularly to rename them according to the recommended mutation nomenclature. The increasing number of investigations on the functions of the MeCP2 can help to gain more information about the neuropathogenetic mechanisms causing RTT. Hum Mutat 22:107–115, 2003. © 2003 Wiley‐Liss, Inc.
ISSN:1059-7794
1098-1004
DOI:10.1002/humu.10243