Hyphenation and hypernation: The practice and prospects of multiple hyphenation

In the past two decades, combining a chromatographic separation system on-line with a spectroscopic detector in order to obtain structural information on the analytes present in a sample has become the most important approach for the identification and/or confirmation of the identity of target and u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 2003-06, Vol.1000 (1), p.325-356
Hauptverfasser: Wilson, I.D, Brinkman, U.A.Th
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the past two decades, combining a chromatographic separation system on-line with a spectroscopic detector in order to obtain structural information on the analytes present in a sample has become the most important approach for the identification and/or confirmation of the identity of target and unknown chemical compounds. In most instances, such hyphenation can be accomplished by using commercially available equipment. For most (trace-level) analytical problems encountered today, the combination of column liquid chromatography or capillary gas chromatography with a mass spectrometer (LC–MS and GC–MS, respectively) is the preferred approach. However, it is also true that additional and/or complementary information is, in quite a number of cases, urgently required. This can be provided by, for example, atomic emission, Fourier-transform infrared, diode-array UV–vis absorbance or fluorescence emission, or nuclear magnetic resonance spectrometry. In the present review, the various options are briefly discussed and a few relevant applications are quoted for each combination. Special attention is devoted to systems in which multiple hyphenation, or hypernation, is an integral part of the setup. As regards this topic, the relative merits of various combinations—which turn out to include a mass spectrometer as one of the detectors in essentially all cases—are discussed and the fundamental differences between GC- and LC-based systems are outlined. Finally, the practicability of more extensive hypernation in LC, viz. with up to four spectrometers, is discussed. It is demonstrated that, technically, such multiple hyphenation is possible and that, from a practical point of view, rewarding results can be obtained. In other words, further research in this area is certainly indicated. However, in the foreseeable future, using several separate conventional hyphenated systems will be the commonly implemented solution in most instances.
ISSN:0021-9673
DOI:10.1016/S0021-9673(03)00504-1