Three different origins for apparent triploid/diploid mosaics
Four apparent triploid/diploid mosaic cases were studied. Three of the cases were detected at prenatal diagnosis and the other was of an intellectually handicapped, dysmorphic boy. Karyotypes were performed in multiple tissues if possible, and the inheritance of microsatellites was studied with DNA...
Gespeichert in:
Veröffentlicht in: | Prenatal diagnosis 2003-07, Vol.23 (7), p.529-534 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Four apparent triploid/diploid mosaic cases were studied. Three of the cases were detected at prenatal diagnosis and the other was of an intellectually handicapped, dysmorphic boy. Karyotypes were performed in multiple tissues if possible, and the inheritance of microsatellites was studied with DNA from fetal tissues and parental blood. Non‐mosaic triploids have a different origin from these mosaics with simple digyny or diandry documented in many cases. Three different mechanisms of origin for these apparent mosaics were detected: (1) chimaerism with karyotypes from two separate zygotes developing into a single individual, (2) delayed digyny, by incorporation of a pronucleus from a second polar body into one embryonic blastomere, and (3) delayed dispermy, similarly, by incorporation of a second sperm pronucleus into one embryonic blastomere. In three of the four cases, there was segregation within the embryos of triploid and diploid cell lines into different tissues from which DNA could be isolated. In case 2 originating by digyny, the same sperm allele at each locus could be detected in both triploid and diploid tissues, which is supportive evidence for the involvement of a single sperm and for true mosaicism rather than chimaerism. Similarly, in case 4 originating by dispermy, the same single ovum allele at each locus could be detected in diploid and triploid tissues, confirming mosaicism. In the chimaeric case (case 3), the diploid line had the karyotype 47,XY,+16 while the triploid line was 69,XXY. This suggests a chimaera, since, in a true mosaic, the triploid line should also contain the additional chromosome 16. Supporting the interpretation of a chimaeric origin for this case, the DNA data showed that the triploidy was consistent with MII non‐disjunction (i.e. involving a diploid ovum). In the mosaic cases (1, 2, 4), there was no evidence of the involvement of a diploid sperm or a diploid ova, and in triploid/diploid mosaicism, an origin from a diploid gamete is excluded, since all such conceptuses would be simple triploids. In one of these triploid/diploid mosaics detected at prenatal diagnosis by CVS, the triploid line seemed to be sequestered into the extra‐fetal tissues (confined placental mosaicism). This fetus developed normally and a normal infant was born with no evidence of triploidy in newborn blood or cord blood at three months of age. Copyright © 2003 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0197-3851 1097-0223 |
DOI: | 10.1002/pd.634 |