Identification of fat, protein matrix, and water/starch on microscopy images of sausages by a principal component analysis-based segmentation scheme

A color‐based segmentation scheme applied to microscopy images of cryosectioned sausages is proposed. The segmentation scheme is capable of segmenting three different levels on the microscopy images: the fat particles, the protein matrix, and water/starch. The method is based on principal component...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scanning 2003-05, Vol.25 (3), p.109-115
Hauptverfasser: Kohler, Achim, Høst, Vibeke, Enersen, Grethe, Ofstad, Ragni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A color‐based segmentation scheme applied to microscopy images of cryosectioned sausages is proposed. The segmentation scheme is capable of segmenting three different levels on the microscopy images: the fat particles, the protein matrix, and water/starch. The method is based on principal component analysis. A user‐friendly program was developed for the manual segmentation of a selection of image pixels by microscopists. Principal component models based on the manually classified pixels are then used to segment fat, protein matrix, and starch/water on microscopy images. The program can also be used as a training tool for microscopists.
ISSN:0161-0457
1932-8745
DOI:10.1002/sca.4950250302