Adjacent segment motion after a simulated lumbar fusion in different sagittal alignments: A biomechanical analysis

An in vitro biomechanical study of adjacent segment motion (at L3-L4 and L5-S1) after a simulated lumbar interbody fusion of L4-L5 in different sagittal alignments was carried out. To test the hypothesis that an L4-L5 fixation in different sagittal alignments causes increased angular motion at the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Spine (Philadelphia, Pa. 1976) Pa. 1976), 2003-07, Vol.28 (14), p.1560-1566
Hauptverfasser: AKAMARU, Tomoyuki, KAWAHARA, Norio, YOON, S. Tim, MINAMIDE, Akihito, KEUN SU KIM, TOMITA, Katsuro, HUTTON, William C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An in vitro biomechanical study of adjacent segment motion (at L3-L4 and L5-S1) after a simulated lumbar interbody fusion of L4-L5 in different sagittal alignments was carried out. To test the hypothesis that an L4-L5 fixation in different sagittal alignments causes increased angular motion at the adjacent levels (L3-L4 and L5-S1) in comparison with the intact spine. Clinical experience has suggested that lumbar fusion in a nonanatomic sagittal alignment can increase degeneration of the adjacent levels. It has been hypothesized that this is the result of increased motion at these levels; however, to the authors' knowledge no mechanical studies have demonstrated this. Eight fresh human cadaveric lumbar spines (L3-S1) were biomechanically tested. Total angular motion at L3-L4 and L5-S1 under flexion-extension load conditions (7-Nm flexion and 7-Nm extension) was measured. Each specimen was tested intact, and then again after each of three different sagittal fixation angles (at L4-L5): (1) in situ (21 degrees lordosis), (2) hyperlordotic (31 degrees lordosis), and (3) hypolordotic (7 degrees lordosis). The simulated anterior/posterior fusion was performed at L4-L5 with pedicle screws posteriorly, vertebral body screws anteriorly, and an interbody dowel. The averaged values for flexion-extension motion at L3-L4 were as follows: intact specimen 2.0 degrees, in situ fixation 4.0 degrees, hyperlordotic fixation 1.7 degrees, hypolordotic fixation 6.5 degrees. The averaged values for flexion-extension motions at L5-S1 were as follows: intact specimen 2.3 degrees, in situ fixation 2.6 degrees, hyperlordotic fixation 3.6 degrees, hypolordotic fixation 2.9 degrees. Hypolordotic alignment at L4-L5 caused the greatest amount of flexion-extension motion at L3-L4, and the differences were statistically significant in comparison with intact specimen, in situ fixation, and hyperlordotic fixation. Hyperlordotic alignment at L4-L5 caused the greatest amount of flexion-extension motion at L5-S1, and the difference was statistically significant in comparison with intact specimen but not in situ fixation or hypolordotic fixation.
ISSN:0362-2436
1528-1159
DOI:10.1097/01.BRS.0000076820.44132.99