Identifying and tracking neural stem cells
Hematopoietic stem cells, unlike neural stem cells, can be readily identified and isolated from developing and adult cell populations using positive and negative selection criteria. Isolating stem cells and progenitor cells from neural tissue has been more difficult because of difficulties in separa...
Gespeichert in:
Veröffentlicht in: | Blood cells, molecules, & diseases molecules, & diseases, 2003-07, Vol.31 (1), p.18-27 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hematopoietic stem cells, unlike neural stem cells, can be readily identified and isolated from developing and adult cell populations using positive and negative selection criteria. Isolating stem cells and progenitor cells from neural tissue has been more difficult because of difficulties in separating cells in solid tissue, the limited numbers of stem cells that persist in the adult, and the paucity of rigorously characterized markers. Nevertheless, strategies that have worked successfully in hematopoietic stem cell isolation can be adapted to isolate multiple classes of stem and progenitor cells from neural tissue. Neural stem cells also share cellular and molecular properties with other stem cell populations that may serve as surrogate identifiers of multipotentiality. Such potential markers are described. Unlike hematopoietic stem cells, tracking neural cells after transplantation is both necessary and more difficult. It will therefore be necessary to develop invasive and non-invasive strategies to follow transplanted cells and develop useful quantifiable readouts. Some potential strategies are described and current results are discussed. |
---|---|
ISSN: | 1079-9796 1096-0961 |
DOI: | 10.1016/S1079-9796(03)00130-X |