Glucose metabolism and glutamate analog acutely alkalinize pH of insulin secretory vesicles of pancreatic beta-cells
We studied acute changes of secretory vesicle pH in pancreatic beta-cells with a fluorescent pH indicator, lysosensor green DND-189. Fluorescence was decreased by 0.66 +/- 0.10% at 149 +/- 16 s with 22.2 mM glucose stimulation, indicating that vesicular pH was alkalinized by approximately 0.016 unit...
Gespeichert in:
Veröffentlicht in: | American journal of physiology: endocrinology and metabolism 2003-08, Vol.285 (2), p.E262-E271 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We studied acute changes of secretory vesicle pH in pancreatic beta-cells with a fluorescent pH indicator, lysosensor green DND-189. Fluorescence was decreased by 0.66 +/- 0.10% at 149 +/- 16 s with 22.2 mM glucose stimulation, indicating that vesicular pH was alkalinized by approximately 0.016 unit. Glucose-responsive pH increase was observed when cytosolic Ca2+ influx was blocked but disappeared when an inhibitor of glycolysis or mitochondrial ATP synthase was present. Glutamate dimethyl ester (GME), a plasma membrane-permeable analog of glutamate, potentiated glucose-stimulated insulin secretion at 5 mM without changing cellular ATP content or cytosolic Ca2+ concentration ([Ca2+]). Application of GME at basal glucose concentration decreased DND-189 fluorescence by 0.83 +/- 0.19% at 38 +/- 2 s. These results indicated that the acutely alkalinizing effect of glucose on beta-cell secretory vesicle pH was dependent on glucose metabolism but independent of modulations of cytosolic [Ca2+]. Moreover, glutamate derived from glucose may be one of the mediators of this alkalinizing effect of glucose, which may have potential relevance to the alteration of secretory function by glutamate. |
---|---|
ISSN: | 0193-1849 1522-1555 |
DOI: | 10.1152/ajpendo.00542.2002 |