Abductive reasoning with recurrent neural networks

Abduction is the process of proceeding from data describing a set of observations or events, to a set of hypotheses which best explains or accounts for the data. Cost-based abduction (CBA) is a formalism in which evidence to be explained is treated as a goal to be proven, proofs have costs based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2003-06, Vol.16 (5), p.665-673
Hauptverfasser: Abdelbar, Ashraf M., Andrews, Emad A.M., Wunsch, Donald C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abduction is the process of proceeding from data describing a set of observations or events, to a set of hypotheses which best explains or accounts for the data. Cost-based abduction (CBA) is a formalism in which evidence to be explained is treated as a goal to be proven, proofs have costs based on how much needs to be assumed to complete the proof, and the set of assumptions needed to complete the least-cost proof are taken as the best explanation for the given evidence. In previous work, we presented a method for using high order recurrent networks to find least cost proofs for CBA instances. Here, we present a method that significantly reduces the size of the neural network that is produced for a given CBA instance. We present experimental results describing the performance of this method and comparing its performance to that of the previous method.
ISSN:0893-6080
1879-2782
DOI:10.1016/S0893-6080(03)00114-X