The Stereochemistry of the Thermal Cheletropic Decarbonylation of 3-Cyclopentenone As Determined by Multiphoton Infrared Photolysis/Thermolysis

There are two allowed pathways for the thermal cheletropic decarbonylation of 3-cyclopentenone. The stereochemistry of decarbonylation of an unconstrained derivative (trans,trans-2,5-dimethyl-3-cyclopentenone, 4) has been determined for the first time. Under conventional pyrolysis conditions, therma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2003-07, Vol.125 (28), p.8529-8533
Hauptverfasser: Unruh, Gregory R, Birney, David M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There are two allowed pathways for the thermal cheletropic decarbonylation of 3-cyclopentenone. The stereochemistry of decarbonylation of an unconstrained derivative (trans,trans-2,5-dimethyl-3-cyclopentenone, 4) has been determined for the first time. Under conventional pyrolysis conditions, thermal rearrangements of the initial product (trans,trans-2,4-hexadiene, 5) occur at the high temperatures required for the decarbonylation. However, by using multiphoton infrared photolysis/thermolysis to initiate decarbonylation, it was shown that the initial products from thermal decarbonylation of 4 are solely carbon monoxide and stereospecifically 5. The stereochemistry of decarbonylation is thus disrotatory, in accord with prior theoretical studies. A survey of crystal structures reveals ground-state distortions along this reaction coordinate as well.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja0353661