Liver-specific IGF-I gene deficient mice exhibit accelerated diabetes in response to streptozotocin, associated with early onset of insulin resistance

Liver-specific IGF-I gene deficient (LID) mice exhibit pancreatic islet hyperplasia and insulin resistance. To clarify their causal relationship, we studied age-dependent changes in these two aspects and the response to β-cell damage caused by streptozotocin in adult mice. As a result, the onset of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular endocrinology 2003-06, Vol.204 (1), p.31-42
Hauptverfasser: Yu, Rong, Yakar, Shoshana, Liu, Ye Lauren, Lu, Yarong, LeRoith, Derek, Miao, Dengshun, Liu, Jun-Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liver-specific IGF-I gene deficient (LID) mice exhibit pancreatic islet hyperplasia and insulin resistance. To clarify their causal relationship, we studied age-dependent changes in these two aspects and the response to β-cell damage caused by streptozotocin in adult mice. As a result, the onset of insulin resistance in LID mice was detectable as early as 1-month of age, while hyperinsulinemia was developed after a significant delay at 2.5-month. Upon streptozotocin administration, control mice exhibited significant hyperglycemia after 9 days, and glucose levels continued to rise at 12–15 days. LID mice developed diabetes much more rapidly, with hyperglycemia after 6 days and higher glucose levels up to 15 days. They also exhibited significant weight loss and 6/19 died. Serum insulin assay, insulin mRNA analysis and immunohistochemistry revealed that the more severe diabetes in LID mice was not due to more damage to their β-cells. Thus LID mice are more sensitive to streptozotocin-induced β-cell damage, due to a primary defect in insulin responsiveness. The pancreatic islet hyperplasia observed in these mice seems to represent a compensatory response to insulin resistance, therefore, offers no protection against β-cell damage.
ISSN:0303-7207
1872-8057
DOI:10.1016/S0303-7207(03)00145-X