The influence of prematurity and long chain polyunsaturate supplementation in 4-week adjusted age baboon neonate brain and related tissues

Clinical studies show that docosahexaenoic acid (DHA) and arachidonic acid (ARA) supplemented formula improve visual function in preterm infants, however improved fatty acid status is known only for plasma and red blood cells (RBC) since target organs cannot be sampled from humans. Baboons were rand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric research 2003-08, Vol.54 (2), p.244-252
Hauptverfasser: SARKADI-NAGY, Eszter, WIJENDRAN, Vasuki, DIAU, Guan-Yeu, CHUEH CHAO, Angela, HSIEH, Andrea T, TURPEINEN, Anu, NATHANIELSZ, Peter W, BRENNA, J. Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clinical studies show that docosahexaenoic acid (DHA) and arachidonic acid (ARA) supplemented formula improve visual function in preterm infants, however improved fatty acid status is known only for plasma and red blood cells (RBC) since target organs cannot be sampled from humans. Baboons were randomized to one of four groups: Term breast-fed (B); Term formula-fed (T-); Preterm formula-fed (P-); and Preterm DHA/ARA-supplemented formula-fed (P+). The P+ contained 0.61 +/- 0.03% DHA and 1.21 +/- 0.09% ARA, and breast milk had 0.68 +/- 0.22% and 0.62 +/- 0.12% as DHA and ARA, respectively. The B and P+ groups had significantly higher DHA concentration in all tissues than T- and P-. The P- group showed dramatically lower DHA content of 35%, 27%, 66%, and 75% in the brain, retina, liver, and plasma, respectively, compared with B. Supplementation prevented declines in DHA levels in the retina, and liver, and attenuated the decline in brain, plasma and RBC of preterm animals. In contrast, ARA was not significantly lower compared with B in any group in any tissue but was significantly elevated in liver and brain. RBC and plasma DHA were correlated with DHA in tissues; RBC/plasma ARA were uncorrelated with tissue ARA. We conclude that 1) DHA drops precipitously in term and preterm primates consuming formula without long chain polyunsaturates, while 22:5n-6 concentration rises; 2) tissue ARA levels are insensitive to dietary LCP supplementation or prematurity, 3) plasma and RBC levels of ARA are uncorrelated with total ARA levels; 4) DHA levels are correlated with group effects and are uncorrelated within groups.
ISSN:0031-3998
1530-0447
DOI:10.1203/01.PDR.0000072795.38990.F2