A generalized feedforward neural network architecture for classification and regression

This article presents a new generalized feedforward neural network (GFNN) architecture for pattern classification and regression. The GFNN architecture uses as the basic computing unit a generalized shunting neuron (GSN) model, which includes as special cases the perceptron and the shunting inhibito...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2003-06, Vol.16 (5), p.561-568
Hauptverfasser: Arulampalam, Ganesh, Bouzerdoum, Abdesselam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a new generalized feedforward neural network (GFNN) architecture for pattern classification and regression. The GFNN architecture uses as the basic computing unit a generalized shunting neuron (GSN) model, which includes as special cases the perceptron and the shunting inhibitory neuron. GSNs are capable of forming complex, nonlinear decision boundaries. This allows the GFNN architecture to easily learn some complex pattern classification problems. In this article the GFNNs are applied to several benchmark classification problems, and their performance is compared to the performances of SIANNs and multilayer perceptrons. Experimental results show that a single GSN can outperform both the SIANN and MLP networks.
ISSN:0893-6080
1879-2782
DOI:10.1016/S0893-6080(03)00116-3