Electrochemical and enzymatic activity of flavin adenine dinucleotide and glucose oxidase immobilized by adsorption on carbon
Flavin adenine dinucleotide (FAD) and glucose oxidase were adsorbed on medium porosity spectroscopic graphite (SG) and on low porosity glassy carbon (GC) with retention of electrochemical activity, as measured by cyclic and differential pulse voltammetry. Adsorption on the SG was very strong, while...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 1984-11, Vol.26 (11), p.1364-1371 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flavin adenine dinucleotide (FAD) and glucose oxidase were adsorbed on medium porosity spectroscopic graphite (SG) and on low porosity glassy carbon (GC) with retention of electrochemical activity, as measured by cyclic and differential pulse voltammetry. Adsorption on the SG was very strong, while that on GC was much weaker. Enzyme activity could be partially restored by the addition of the apoenzyme of glucose oxidase to the SG‐adsorbed FAD preparation. The holoenzyme of glucose oxidase also was adsorbed on SG with retention of enzyme activity. The mechanism for the reconstitution of active enzyme from adsorbed FAD and soluble apoenzyme is not clear. The data suggest that the reconstituted enzyme stays adsorbed to the SG, but it is not clear whether the FAD or protein portions (or both) are adsorbed after reconstitution. The data also indicate that substrate mass transfer resistance may be important with the reconstituted–adsorbed enzyme. |
---|---|
ISSN: | 0006-3592 1097-0290 |
DOI: | 10.1002/bit.260261114 |