Shift of Chloride Cell Distribution during Early Life Stages in Seawater-Adapted Killifish, Fundulus heteroclitus

The shift of chloride cell distribution was investigated during early life stages of seawater-adapted killifish (Fundulus heteroclitus). Chloride cells were detected by immunocytochemistry with an an-tiserum specific for Na+, K+-ATPase in whole-mount preparations and paraffin sections. Chloride cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zoological Science 2000-01, Vol.17 (1), p.11-18
Hauptverfasser: Katoh, Fumi, Shimizu, Akio, Uchida, Katsuhisa, Kaneko, Toyoji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The shift of chloride cell distribution was investigated during early life stages of seawater-adapted killifish (Fundulus heteroclitus). Chloride cells were detected by immunocytochemistry with an an-tiserum specific for Na+, K+-ATPase in whole-mount preparations and paraffin sections. Chloride cells first appeared in the yolk-sac membrane in the early embryonic stage, followed by their appearance in the body skin in the late embryonic stage. Immunoreactive chloride cells in the yolk-sac membrane and body skin often formed multicellular complexes, as evidenced by the presence of more than one nucleus. The principal site for chloride cell distribution shifted from the yolk-sac membrane and body skin during embryonic stages to the gill and opercular membrane in larval and later developmental stages. Our observations suggest that killifish embryos and newly-hatched larvae could maintain their ion balance through chloride cells present in the yolk-sac membrane and body skin until branchial and opercular chloride cells become functional.
ISSN:0289-0003
DOI:10.2108/zsj.17.11