Scattering of a spheroidal particle illuminated by a gaussian beam
An approach to expanding a Gaussian beam in terms of the spheroidal wave functions in spheroidal coordinates is presented. The beam-shape coefficients of the Gaussian beam in spheroidal coordinates can be computed conveniently by use of the known expression for beam-shape coefficients, g(n), in sphe...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2001-05, Vol.40 (15), p.2501-2509 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An approach to expanding a Gaussian beam in terms of the spheroidal wave functions in spheroidal coordinates is presented. The beam-shape coefficients of the Gaussian beam in spheroidal coordinates can be computed conveniently by use of the known expression for beam-shape coefficients, g(n), in spherical coordinates. The unknown expansion coefficients of scattered and internal electromagnetic fields are determined by a system of equations derived from the boundary conditions for continuity of the tangential components of the electric and magnetic vectors across the surface of the spheroid. A solution to the problem of scattering of a Gaussian beam by a homogeneous prolate (or oblate) spheroidal particle is obtained. The numerical values of the expansion coefficients and the scattered intensity distribution for incidence of an on-axis Gaussian beam are given. |
---|---|
ISSN: | 1559-128X 0003-6935 1539-4522 |
DOI: | 10.1364/AO.40.002501 |