Optical and thermal characterization of albumin protein solders

The effect of temperature on the optical and thermal properties of pure and indocyanine green-doped albumin protein solders as a function of wavelength has been studied between 25 degrees C and 100 degrees C. An increase in the group refractive index by up to 4% and a decrease in absorption coeffici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 1999-11, Vol.38 (31), p.6661-6672
Hauptverfasser: McNally, K M, Sorg, B S, Bhavaraju, N C, Ducros, M G, Welch, A J, Dawes, J M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of temperature on the optical and thermal properties of pure and indocyanine green-doped albumin protein solders as a function of wavelength has been studied between 25 degrees C and 100 degrees C. An increase in the group refractive index by up to 4% and a decrease in absorption coefficient (approximately 800 nm) by up to 8%, after denaturing the solder specimens in a constant-temperature water bath at temperatures of 60-100 degrees C, were not significant. The reduced scattering coefficient, however, increased rapidly with temperature as the solder changed from being a highly nonscattering medium at room temperature to a highly scattering medium at temperatures close to 70 degrees C. The thermal conductivity, thermal diffusivity, and heat capacity increased by up to 30%, 15%, and 10%, respectively. Finally, the frequency factor and activation energy were measured to be 3.17 x 10(56) s(-1) and 3.79 x 10(5) J mol(-1), respectively, for liquid protein solders (25% bovine serum albumin) and 3.50 x 10(57) s(-1) and 3.85 x 10(5) J mol(-1), respectively, for solid protein solders (60% bovine serum albumin). Incorporation of dynamic optical and thermal properties into modeling studies of laser tissue interactions could have a significant influence on the determination of the expected zone of damage.
ISSN:1559-128X
0003-6935
1539-4522
DOI:10.1364/AO.38.006661