Multilayer-coating-induced aberrations in extreme-ultraviolet lithography optics
A multilayer coating alters the amplitude and phase of a reflected wave front. The amplitude effects are multiplicative and well understood. We present a mathematical formalism that can be used to describe the phase effects of coating in a general case. On the basis of this formalism we have develop...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2001-01, Vol.40 (1), p.129-135 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A multilayer coating alters the amplitude and phase of a reflected wave front. The amplitude effects are multiplicative and well understood. We present a mathematical formalism that can be used to describe the phase effects of coating in a general case. On the basis of this formalism we have developed an analytical method of estimating the wave-front aberrations introduced by the multilayer coating. For the case of field-independent aberrations, we studied both uniform and graded multilayer coatings. For the case of field-dependent aberrations, we studied only the effects of a uniform multilayer coating. Our analysis is based on a coated plane mirror tilted with respect to an incident converging beam. Altogether we have found, up to the second order, the following aberrations: a field-dependent piston, a field-squared-dependent piston, defocus, field-independent tilt, field-independent astigmatism, and anamorphic magnification. To obtain numerical results we apply our analysis to the specific case of a plane mirror tilted 8.2 deg with respect to an incident converging beam with a numerical aperture of 0.1. We find that the magnitudes of the field-independent aberration coefficients for the graded coating are approximately ten times smaller than those for the uniform coating. We show that a coating can introduce anamorphic magnification. |
---|---|
ISSN: | 1559-128X 0003-6935 1539-4522 |
DOI: | 10.1364/AO.40.000129 |