Fresnel zone plate imaging of gamma rays; theory

The use of a Fresnel zone plate as a coded aperture for imaging incoherent radiation such as gamma rays has been previously reported. The coded image is in many respects similar to a hologram and can be decoded or reconstructed with a coherent optical system. In this paper, the general theory of cod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 1973-11, Vol.12 (11), p.2686-2702
Hauptverfasser: Barrett, H H, Horrigan, F A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of a Fresnel zone plate as a coded aperture for imaging incoherent radiation such as gamma rays has been previously reported. The coded image is in many respects similar to a hologram and can be decoded or reconstructed with a coherent optical system. In this paper, the general theory of coded-aperture imaging is presented, first for an arbitrary code and then for an on-axis zone plate, an off-axis zone plate, and a one-dimensional zone plate (or linear chirp). With the on-axis plate, a matched imaging condition is suggested as a guide to optimizing image contrast. With the off-axis zone plate and the linear chirp, it is necessary to use a half-tone screen to spatially heterodyne the object spectrum into the passband of the aperture. In all three cases, expressions for the resolution, depth of field, field of view, and relative efficiency are derived. A simplified noise analysis is presented, and some practical system constraints are discussed.
ISSN:1559-128X
0003-6935
1539-4522
DOI:10.1364/AO.12.002686