Molecular Recognition Theory of the complementary (antisense) peptide interactions

Molecular Recognition Theory is based on the finding of Blalock et al. (Biochem. Biophys. Res. Commun. 121 (1984) 203–207; Nature Med. 1 (1995) 876–878; Biochem. J. 234 (1986) 679–683) that peptides specified by the complementary RNAs bind to each other with higher specificity and efficacy. This the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory in biosciences = Theorie in den Biowissenschaften 2005-04, Vol.123 (4), p.265-275
Hauptverfasser: Štambuk, Nikola, Konjevoda, Paško, Boban-Blagaić, Alenka, Pokrić, Biserka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular Recognition Theory is based on the finding of Blalock et al. (Biochem. Biophys. Res. Commun. 121 (1984) 203–207; Nature Med. 1 (1995) 876–878; Biochem. J. 234 (1986) 679–683) that peptides specified by the complementary RNAs bind to each other with higher specificity and efficacy. This theory is investigated considering the interaction of the sense peptides coded by means of messenger RNA (read in 5′→3′ direction) and antisense peptides coded in 3′→5′ direction. We analysed the hydropathy of the complementary amino acid pairs and their frequencies in 10 peptide–receptor systems with verified ligand–receptor interaction. An optimization procedure aimed to reduce the number of possible antisense peptides derived from the sense peptide has been proposed. Molecular Recognition Theory was also validated by an “in vivo” experiment. It was shown that 3′→5′ peptide antisense of α-MSH abolished its cytoprotective effects on the gastric mucosa in rats. Molecular Recognition Theory could be useful method to simplify experimental procedures, reduce the costs of the peptide synthesis, and improve peptide structure modelling.
ISSN:1431-7613
1611-7530
DOI:10.1016/j.thbio.2005.02.001