Castration resistance of prostate cancer cells caused by castration-induced oxidative stress through Twist1 and androgen receptor overexpression

There are few successful therapies for castration-resistant prostate cancer (CRPC). Recently, CRPC has been thought to result from augmented androgen/androgen receptor (AR) signaling pathway, for most of which AR overexpression has been observed. In this study, Twist1, a member of basic helix-loop-h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2010-01, Vol.29 (2), p.237-250
Hauptverfasser: Shiota, M, Yokomizo, A, Tada, Y, Inokuchi, J, Kashiwagi, E, Masubuchi, D, Eto, M, Uchiumi, T, Naito, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There are few successful therapies for castration-resistant prostate cancer (CRPC). Recently, CRPC has been thought to result from augmented androgen/androgen receptor (AR) signaling pathway, for most of which AR overexpression has been observed. In this study, Twist1, a member of basic helix-loop-helix transcription factors as well as AR was upregulated in response to hydrogen peroxide, and the response to which was abolished by an addition of N -acetyl-L-cysteine and Twist1 knockdown. In addition, castration-resistant LNCaP derivatives and hydrogen peroxide-resistant LNCaP derivatives exhibited a similar phenotype to each other. Then, both castration and AR knockdown increased intracellular reactive oxygen species level. Moreover, Twist1 was shown to regulate AR expression through binding to E-boxes in AR promoter region. Silencing of Twist1 suppressed cell growth of AR-expressing LNCaP cells as well as castration-resistant LNCaP derivatives by inducing cell-cycle arrest at G1 phase and cellular apoptosis. These findings indicated that castration-induced oxidative stress may promote AR overexpression through Twist1 overexpression, which could result in a gain of castration resistance. Modulation of castration-induced oxidative stress or Twist1/AR signaling might be a useful strategy for developing a novel therapeutics in prostate cancer, even in CRPC, which remains dependent on AR signaling by overexpressing AR.
ISSN:0950-9232
1476-5594
DOI:10.1038/onc.2009.322