Minimum variance centroid thresholding
Image-processing thresholding algorithms are extended segmentation tools that are suitable for tracking applications. The centroid of the tracked image distribution is a good point of reference for the location of the image. We describe a new thresholding technique that is based on the estimation of...
Gespeichert in:
Veröffentlicht in: | Optics letters 2002-04, Vol.27 (7), p.497-499 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Image-processing thresholding algorithms are extended segmentation tools that are suitable for tracking applications. The centroid of the tracked image distribution is a good point of reference for the location of the image. We describe a new thresholding technique that is based on the estimation of the optimum threshold for achieving minimal variance in the centroid of the processed image. Experimental proofs for evaluating the technique's performance are given. The direct extension of these results to Shack-Hartmann wave-front sensors is also shown. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.27.000497 |