Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations
The channel specifications of the Global Imager onboard the Advanced Earth Observing Satellite II have been determined by extensive numerical experiments. The results show that there is an optimum feasible position for each ocean color channel. The bandwidth of the 0.763-microm channel should be les...
Gespeichert in:
Veröffentlicht in: | Applied Optics 1998-05, Vol.37 (15), p.3149-3163 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The channel specifications of the Global Imager onboard the Advanced Earth Observing Satellite II have been determined by extensive numerical experiments. The results show that there is an optimum feasible position for each ocean color channel. The bandwidth of the 0.763-microm channel should be less than 10 nm for good sensitivity to the cloud top height and geometric thickness of the cloud layer; a 40-nm bandwidth is suitable for the 1.38-microm channel to have the strongest contrast between cloudy and clear radiance with a sufficient radiant energy; and a 3.7-microm channel is better than a 3.95-microm channel for estimation of the sea surface temperature (SST) and determination of the cloud particle size when the bandwidth of the channel is 0.33 microm. A three-wavelength combination of 6.7, 7.3, and 7.5 microm is an optimized choice for water vapor profiling. The combination of 8.6, 10.8, and 12.0 microm is suitable for cloud microphysics and SST retrievals with the split-window technique. |
---|---|
ISSN: | 1559-128X 0003-6935 1539-4522 |
DOI: | 10.1364/ao.37.003149 |