Practical application to time indicator of a novel white film formed by interaction of calcium salts with hydroxypropyl methylcellulose

We have found that a cast film forms a white film when an aqueous solution comprising hydroxypropyl methylcellulose (HPMC) and calcium salts such as calcium lactate pentahydrate (CLP) and calcium chloride (CaCl 2) is used. In contrast, the obtained white film was transformed into a transparent film...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2010-01, Vol.383 (1), p.255-263
Hauptverfasser: Shiraishi, Sumihiro, Sakata, Yukoh, Yamaguchi, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have found that a cast film forms a white film when an aqueous solution comprising hydroxypropyl methylcellulose (HPMC) and calcium salts such as calcium lactate pentahydrate (CLP) and calcium chloride (CaCl 2) is used. In contrast, the obtained white film was transformed into a transparent film by the addition of purified water. The transformation time for the change from the white film to the transparent film was dependent on film thickness. The relationship between the transformation time and the film thickness was significantly correlated, and it was found that the white film could be adaptable as time indicator. The formation of a white film comprising HPMC and calcium salts was strongly dependent on temperature conditions. The objective of the present study is to investigate the mechanism of the formation of this white film because of the interaction between HPMC and calcium salts. The DSC and XRPD results indicate that the calcium salts affect the HPMC polymer phase in the cast film comprising HPMC and calcium salts. By carrying out attenuated total reflection Fourier transform infrared (ATR FT-IR) analysis, we found that the white film could be formed by the calcium salts affecting the region associated with the C–O–C, C–O, and CH 3 stretching of the HPMC polymer phase.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2009.09.024