A novel technique for selective NF-kappaB inhibition in Kupffer cells: contrary effects in fulminant hepatitis and ischaemia-reperfusion

The transcription factor nuclear factor kappa B (NF-kappaB) has risen as a promising target for anti-inflammatory therapeutics. In the liver, however, NF-kappaB inhibition mediates both damaging and protective effects. The outcome is deemed to depend on the liver cell type addressed. Recent gene kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gut 2009-12, Vol.58 (12), p.1670-1678
Hauptverfasser: Hoffmann, F, Sass, G, Zillies, J, Zahler, S, Tiegs, G, Hartkorn, A, Fuchs, S, Wagner, J, Winter, G, Coester, C, Gerbes, A L, Vollmar, A M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transcription factor nuclear factor kappa B (NF-kappaB) has risen as a promising target for anti-inflammatory therapeutics. In the liver, however, NF-kappaB inhibition mediates both damaging and protective effects. The outcome is deemed to depend on the liver cell type addressed. Recent gene knock-out studies focused on the role of NF-kappaB in hepatocytes, whereas the role of NF-kappaB in Kupffer cells has not yet been investigated in vivo. Here we present a novel approach, which may be suitable for clinical application, to selectively target NF-kappaB in Kupffer cells and analyse the effects in experimental models of liver injury. NF-kappaB inhibiting decoy oligodeoxynucleotides were loaded upon gelatin nanoparticles (D-NPs) and their in vivo distribution was determined by confocal microscopy. Liver damage, NF-kappaB activity, cytokine levels and apoptotic protein expression were evaluated after lipopolysaccharide (LPS), d-galactosamine (GalN)/LPS, or concanavalin A (ConA) challenge and partial warm ischaemia and subsequent reperfusion, respectively. D-NPs were selectively taken up by Kupffer cells and inhibited NF-kappaB activation. Inhibition of NF-kappaB in Kupffer cells improved survival and reduced liver injury after GalN/LPS as well as after ConA challenge. While anti-apoptotic protein expression in liver tissue was not reduced, pro-apoptotic players such as cJun N-terminal kinase (JNK) were inhibited. In contrast, selective inhibition of NF-kappaB augmented reperfusion injury. NF-kappaB inhibiting decoy oligodeoxynucleotide-loaded gelatin nanoparticles is a novel tool to selectively inhibit NF-kappaB activation in Kupffer cells in vivo. Thus, liver injury can be reduced in experimental fulminant hepatitis, but increased at ischaemia-reperfusion.
ISSN:1468-3288
DOI:10.1136/gut.2008.165647