A novel technique for selective NF-kappaB inhibition in Kupffer cells: contrary effects in fulminant hepatitis and ischaemia-reperfusion
The transcription factor nuclear factor kappa B (NF-kappaB) has risen as a promising target for anti-inflammatory therapeutics. In the liver, however, NF-kappaB inhibition mediates both damaging and protective effects. The outcome is deemed to depend on the liver cell type addressed. Recent gene kno...
Gespeichert in:
Veröffentlicht in: | Gut 2009-12, Vol.58 (12), p.1670-1678 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transcription factor nuclear factor kappa B (NF-kappaB) has risen as a promising target for anti-inflammatory therapeutics. In the liver, however, NF-kappaB inhibition mediates both damaging and protective effects. The outcome is deemed to depend on the liver cell type addressed. Recent gene knock-out studies focused on the role of NF-kappaB in hepatocytes, whereas the role of NF-kappaB in Kupffer cells has not yet been investigated in vivo. Here we present a novel approach, which may be suitable for clinical application, to selectively target NF-kappaB in Kupffer cells and analyse the effects in experimental models of liver injury.
NF-kappaB inhibiting decoy oligodeoxynucleotides were loaded upon gelatin nanoparticles (D-NPs) and their in vivo distribution was determined by confocal microscopy. Liver damage, NF-kappaB activity, cytokine levels and apoptotic protein expression were evaluated after lipopolysaccharide (LPS), d-galactosamine (GalN)/LPS, or concanavalin A (ConA) challenge and partial warm ischaemia and subsequent reperfusion, respectively.
D-NPs were selectively taken up by Kupffer cells and inhibited NF-kappaB activation. Inhibition of NF-kappaB in Kupffer cells improved survival and reduced liver injury after GalN/LPS as well as after ConA challenge. While anti-apoptotic protein expression in liver tissue was not reduced, pro-apoptotic players such as cJun N-terminal kinase (JNK) were inhibited. In contrast, selective inhibition of NF-kappaB augmented reperfusion injury.
NF-kappaB inhibiting decoy oligodeoxynucleotide-loaded gelatin nanoparticles is a novel tool to selectively inhibit NF-kappaB activation in Kupffer cells in vivo. Thus, liver injury can be reduced in experimental fulminant hepatitis, but increased at ischaemia-reperfusion. |
---|---|
ISSN: | 1468-3288 |
DOI: | 10.1136/gut.2008.165647 |