Imaging cell signalling and movement in development

Imaging is a method of choice to investigate the complex spatio-temporal cellular dynamics and the signalling pathways that control them during development. The ability to tag many proteins in vivo makes it possible to analyse the detailed dynamics of these interactions ranging over several orders o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in cell & developmental biology 2009-10, Vol.20 (8), p.947-955
Hauptverfasser: Chuai, Manli, Dormann, Dirk, Weijer, Cornelis J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Imaging is a method of choice to investigate the complex spatio-temporal cellular dynamics and the signalling pathways that control them during development. The ability to tag many proteins in vivo makes it possible to analyse the detailed dynamics of these interactions ranging over several orders of magnitude; from the study of single molecule events on the millisecond and nanometre scale up to the complex three-dimensional behaviour of cells in tissues on the millimetre scale over time periods of hours to days. Great advances are being made in the detailed study of molecular processes using high resolution imaging techniques in transparent samples close to the surface of cells or tissues, where light scattering is minimal. The major challenge is to translate some of these methods to the study of cells and tissues in their native 3D environment. These imaging methods require novel and innovative analysis methods to fully exploit the information available in these data. We will illustrate some of these points in the investigation of the development of the cellular slime mould Dictyostelium discoideum and the study of cell behaviours during gastrulation in the chick embryo.
ISSN:1084-9521
1096-3634
DOI:10.1016/j.semcdb.2009.09.001