Dilute wet granular particles: nonequilibrium dynamics and structure formation
We investigate a gas of wet granular particles covered by a thin liquid film. The dynamic evolution is governed by two-particle interactions, which are mainly due to interfacial forces in contrast to dry granular gases. When two wet grains collide, a capillary bridge is formed and stays intact up to...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2009-09, Vol.80 (3 Pt 1), p.031306-031306 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate a gas of wet granular particles covered by a thin liquid film. The dynamic evolution is governed by two-particle interactions, which are mainly due to interfacial forces in contrast to dry granular gases. When two wet grains collide, a capillary bridge is formed and stays intact up to a certain distance of withdrawal when the bridge ruptures, dissipating a fixed amount of energy. A freely cooling system is shown to undergo a nonequilibrium dynamic phase transition from a state with mainly single particles and fast cooling to a state with growing aggregates such that bridge rupture becomes a rare event and cooling is slow. In the early stage of cluster growth, aggregation is a self-similar process with a fractal dimension of the aggregates approximately equal to Df approximately 2 . At later times, a percolating cluster is observed which ultimately absorbs all the particles. The final cluster is compact on large length scales, but fractal with Df approximately 2 on small length scales. |
---|---|
ISSN: | 1550-2376 |
DOI: | 10.1103/PhysRevE.80.031306 |