Low oxygen reduces the modulation to an oxidative phenotype in monolayer-expanded chondrocytes
Autologous chondrocyte implantation requires a phase of in vitro cell expansion, achieved by monolayer culture under atmospheric oxygen levels. Chondrocytes reside under low oxygen conditions in situ and exhibit a glycolytic metabolism. However, oxidative phosphorylation rises progressively during c...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 2010-01, Vol.222 (1), p.248-253 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Autologous chondrocyte implantation requires a phase of in vitro cell expansion, achieved by monolayer culture under atmospheric oxygen levels. Chondrocytes reside under low oxygen conditions in situ and exhibit a glycolytic metabolism. However, oxidative phosphorylation rises progressively during culture, with concomitant reactive oxygen species production. We determine if the high oxygen environment in vitro provides the transformation stimulus. Articular chondrocytes were cultured in monolayer for up to 14 days under 2%, 5%, or 20% oxygen. Expansion under 2% and 5% oxygen reduced the rate at which the cells developed an oxidative phenotype compared to 20% oxygen. However, at 40 ± 4 fmol cell−1 h−1 the oxygen consumption by chondrocytes expanded under 2% oxygen for 14 days was still 14 times the value observed for freshly isolated cells. Seventy‐five to 78% of the increased oxygen consumption was accounted for by oxidative phosphorylation (oligomycin sensitive). Expansion under low oxygen also reduced cellular proliferation and 8‐hydroxyguanosine release, a marker of oxidative DNA damage. However, these parameters remained elevated compared to freshly isolated cells. Thus, expansion under physiological oxygen levels reduces, but does not abolish, the induction of an oxidative energy metabolism. We conclude that simply transferring chondrocytes to low oxygen is not sufficient to either maintain or re‐establish a normal energy metabolism. Furthermore, a hydrophobic polystyrene culture surface which promotes rounded cell morphology had no effect on the development of an oxidative metabolism. Although the shift towards an oxidative energy metabolism is often accompanied by morphological changes, this study does not support the hypothesis that it is driven by them. J. Cell. Physiol. 222:248–253, 2010. © 2009 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0021-9541 1097-4652 |
DOI: | 10.1002/jcp.21946 |