Microperoxidase 11: a model system for porphyrin networks and heme-protein interactions
We measured the circular dichroism (CD) and absorption spectra of the B-band region of microperoxidase 11 (MP11) as a function of temperature and peptide concentration. At micromolar concentrations, small MP11 dimers or trimers lead to excitonic coupling between low-spin and high-spin heme groups, t...
Gespeichert in:
Veröffentlicht in: | Journal of biological inorganic chemistry 2009-11, Vol.14 (8), p.1289-1300 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We measured the circular dichroism (CD) and absorption spectra of the B-band region of microperoxidase 11 (MP11) as a function of temperature and peptide concentration. At micromolar concentrations, small MP11 dimers or trimers lead to excitonic coupling between low-spin and high-spin heme groups, to which the NH₂ group of the MP11 N-terminal and H₂O are bound as a sixth ligand, respectively. These aggregates convert into monomers with hexacoordinated high-spin heme groups with increasing temperature. This transition can be described by a two-state model. Aggregation becomes more extended at 50 μM concentration and causes some B-band hyperchromism, which reflects a J-type arrangement of heme groups linked together in the aggregates formed. At near-millimolar concentration, the CD and absorption spectra of the B-band region suggest the existence of even more extended and thermally stable aggregates, which might involve μ-oxo dimers of the heme groups. The degree of aggregation at 50 and 500 μM concentration increases substantially if the sample is freed from most of its oxygen in a N₂ atmosphere. The CD spectrum of the monomeric high-spin species is reminiscent of that observed for the unfolded alkaline conformation of the intact protein. Finally, we investigated the binding of acetylmethionine (AcM) ligands to the heme at aggregation-supporting conditions (500 μM concentration). The data suggest that the ligand prevents any substantial aggregation. As a surprising result, our data reveal that AcM-MP11 complexes exhibit a high-spin/low-spin mixture, with the high-spin configuration being stabilized at high temperatures. |
---|---|
ISSN: | 0949-8257 1432-1327 |
DOI: | 10.1007/s00775-009-0574-9 |