Tuning of the Zernike phase-plate for visualization of detailed ultrastructure in complex biological specimens
In order to acquire phase-contrast images with adequate contrast, conventional TEM requires large amount of defocus. Increasing the defocus improves the low-frequency components but attenuates the high-frequency ones. On the other hand, Zernike phase-contrast TEM (ZPC-TEM) can recover low-frequency...
Gespeichert in:
Veröffentlicht in: | Journal of structural biology 2009-12, Vol.168 (3), p.476-484 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to acquire phase-contrast images with adequate contrast, conventional TEM requires large amount of defocus. Increasing the defocus improves the low-frequency components but attenuates the high-frequency ones. On the other hand, Zernike phase-contrast TEM (ZPC-TEM) can recover low-frequency components without losing the high-frequency ones under in-focus conditions. ZPC-TEM however, has another problem, especially in imaging of complex biological specimens such as cells and tissues; strong halos appear around specimen structures, and these halos hinder the interpretation of images. Due to this problem, the application of ZPC-TEM has been restricted to imaging of smaller particles. In order to improve the halo appearance, we fabricated a new quarter-wave thin film phase-plate with a smaller central hole and tested it on vitreous biological specimens. ZPC-TEM with the new plate could successfully visualize, in in-focus images, the intracellular fine features of cultured cells and brain tissues. This result indicates that reduction of the central hole diameter makes ZPC-TEM applicable on size scales ranging from protein particles to tissue sections. The application of ZPC-TEM to vitreous biological specimens will be a powerful method to advance the new field of imaging science for ultrastructures in close-to-physiological state. |
---|---|
ISSN: | 1047-8477 1095-8657 |
DOI: | 10.1016/j.jsb.2009.08.011 |