Insertion of Molecular Oxygen into a Palladium(II) Methyl Bond: A Radical Chain Mechanism Involving Palladium(III) Intermediates
The reaction of (bipy)PdMe2 (1) (bipy = 2,2′-bipyridine) with molecular oxygen results in the formation of the palladium(II) methylperoxide complex (bipy)PdMe(OOMe) (2). The identity of the product 2 has been confirmed by independent synthesis. Results of kinetic studies of this unprecedented oxygen...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2009-11, Vol.131 (43), p.15802-15814 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The reaction of (bipy)PdMe2 (1) (bipy = 2,2′-bipyridine) with molecular oxygen results in the formation of the palladium(II) methylperoxide complex (bipy)PdMe(OOMe) (2). The identity of the product 2 has been confirmed by independent synthesis. Results of kinetic studies of this unprecedented oxygen insertion reaction into a palladium alkyl bond support the involvement of a radical chain mechanism. Reproducible rates, attained in the presence of the radical initiator 2,2′-azobis(2-methylpropionitrile) (AIBN), reveal that the reaction is overall first-order (one-half-order in both [1] and [AIBN], and zero-order in [O2]). The unusual rate law (half-order in [1]) implies that the reaction proceeds by a mechanism that differs significantly from those for organic autoxidations and for the recently reported examples of insertion of O2 into Pd(II) hydride bonds. The mechanism for the autoxidation of 1 is more closely related to that found for the autoxidation of main group and early transition metal alkyl complexes. Notably, the chain propagation is proposed to proceed via a stepwise associative homolytic substitution at the Pd center of 1 with formation of a pentacoordinate Pd(III) intermediate. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja9061932 |