Studies in 3,4-diaryl-1,2,5-oxadiazoles and their N-oxides: Search for better COX-2 inhibitors

A series of 3,4-diaryl-1,2,5-oxadiazoles and 3,4-diaryl-1,2,5-oxadiazole N-oxides were prepared and evaluated for COX-2 and COX-1 binding affinity in vitro and for anti-inflammatory activity by the rat paw edema method. p-Methoxy (p-OMe) substituted compounds 9, 21, 34, 41, 42 showed COX-2 enzyme in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta pharmaceutica (Zagreb, Croatia) Croatia), 2007-03, Vol.57 (1), p.13-30
Hauptverfasser: Yadav, Mange, Shirude, Shrikant, Puntambekar, Devendra, Patel, Pinkal, Prajapati, Hetal, Parmar, Arvind, Balaraman, R., Giridhar, Rajani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of 3,4-diaryl-1,2,5-oxadiazoles and 3,4-diaryl-1,2,5-oxadiazole N-oxides were prepared and evaluated for COX-2 and COX-1 binding affinity in vitro and for anti-inflammatory activity by the rat paw edema method. p-Methoxy (p-OMe) substituted compounds 9, 21, 34, 41, 42 showed COX-2 enzyme inhibition higher than that showed by compounds with other substituents. 3,4-Di(4-methoxyphenyl)-1,2,5-oxadiazole N-oxide (42) showed COX-2 enzyme inhibition of 54% at 22 μmol L-1 and COX-1 enzyme inhibition of 44% at 88 μmol L-1 concentrations, but showed very low in vivo anti-inflammatory activity. Its deoxygenated derivative (21) showed lower COX-2 enzyme inhibition (26% at 22 μmol L-1) and higher COX-1 enzyme inhibition (53% at 88 μmol L-1) but, marked in vivo anti-inflammatory activity (71% at 25 mg kg-1) vs. celecoxib (48% at 12.5 mg kg-1). Molecular modeling (docking) studies showed that the methoxy group is positioned in the vicinity of COX-2 secondary pocket and it also participates in hydrogen bonding interactions in the COX-2 active site. These preliminary studies suggest that p-methoxy (p-OMe) group in one of benzene rings may give potentially active leads in this series of oxadiazole/N-oxides.
ISSN:1330-0075
1846-9558
DOI:10.2478/v10007-007-0002-z