In vivo bone engineering in a rabbit femur
The repair of bone defects in reconstructive surgery has significant limitations. Donor site morbidity, limited supply of autograft, and risks and complications associated with allografting and synthetic bone substitutes are among the most significant. In an effort to address these problems, the sea...
Gespeichert in:
Veröffentlicht in: | The Journal of craniofacial surgery 2003-05, Vol.14 (3), p.324-332 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The repair of bone defects in reconstructive surgery has significant limitations. Donor site morbidity, limited supply of autograft, and risks and complications associated with allografting and synthetic bone substitutes are among the most significant. In an effort to address these problems, the search for an ideal bone replacement has led to the development of a new method of poly(lactide-co-glycolide) (PLGA) foam processing, enabling the production of a biodegradable scaffold with similar porosity to human trabecular bone. In this study, these scaffolds were evaluated for bone repair in vivo in a femoral critical-sized segmental defect in New Zealand White (NZW) rabbits. Three groups of nine animals were investigated. In the first group, the critical-sized defects were empty. Scaffolds alone were implanted in the second group, whereas autologous bone marrow cell-loaded scaffolds were implanted in the third group. Animals ambulated freely for 8 weeks after surgery, and bone formation throughout the defects was serially assessed radiographically and quantified using a bone formation index (BFI) measure. Postmortem radiography and histology were also undertaken to examine bone formation. There was a significant effect of applying this technology to the amount of bone formed in the defects as determined by the BFI (F = 3.41, P < 0.05). The mean BFI for the cell-loaded scaffolds was greater than for the control group at all measured time points (2-, 4-, 6-, and 8-week radiographs). This difference was significant for the 2- and 8-week radiographs (P < 0.05). Qualitative histological assessment confirmed these findings. We concluded from these findings that these PLGA scaffolds loaded with marrow-derived progenitor cells yield significant bone formation in a critical-sized rabbit femoral defect. This technology comprising a novel scaffold design and autologous cells may provide an alternative to current strategies for reconstruction of bony defects. |
---|---|
ISSN: | 1049-2275 |
DOI: | 10.1097/00001665-200305000-00010 |