Theoretical investigation on the influence of temperature and crystallographic orientation on the breaking behavior of copper nanowire

In this paper, molecular dynamics simulations have been conducted to study the mechanical stretching of copper nanowires which will finally lead to the formation of suspended liner atomic chains. A total of 2700 samples have been investigated to achieve a comprehensive understanding of the influence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2009-01, Vol.11 (30), p.6514-6519
Hauptverfasser: Liu, Yunhong, Wang, Fenying, Zhao, Jianwei, Jiang, Luyun, Kiguchi, Manabu, Murakoshi, Kei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, molecular dynamics simulations have been conducted to study the mechanical stretching of copper nanowires which will finally lead to the formation of suspended liner atomic chains. A total of 2700 samples have been investigated to achieve a comprehensive understanding of the influence of temperature and orientation on the formation of linear atomic chains. Our results prove that linear atomic chains do exist for [100], [111] and [110] crystallographic directions. Stretching along the [111] direction exhibits a higher probability in forming the two-atom contact than that along the [110] and [100] directions. However, for longer linear atomic chains, there emerges a reversed trend. In addition, increasing temperature may decrease the formation probability for stretching along [111] and [110] directions, but this influence is less obvious for that along the [100] direction.
ISSN:1463-9076
1463-9084
DOI:10.1039/b902795e