Neuroprotective profile of dextromethorphan in an experimental model of penetrating ballistic-like brain injury

Dextromethorphan (DM) has been well-characterized as a neuroprotective agent in experimental models of CNS injury. The goal of this study was to determine the neuroprotective profile of DM in a military-relevant model of penetrating ballistic-like brain injury (PBBI). In an acute (3 day) dose–respon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacology, biochemistry and behavior biochemistry and behavior, 2009-11, Vol.94 (1), p.56-62
Hauptverfasser: Shear, Deborah A., Williams, Anthony J., Sharrow, Keith, Lu, Xi-Chun M., Tortella, Frank C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dextromethorphan (DM) has been well-characterized as a neuroprotective agent in experimental models of CNS injury. The goal of this study was to determine the neuroprotective profile of DM in a military-relevant model of penetrating ballistic-like brain injury (PBBI). In an acute (3 day) dose–response study, anesthetized male Sprague–Dawley rats were exposed to a unilateral frontal PBBI with DM (0.156–10 mg/kg) or vehicle delivered as an i.v. bolus from 30 min to 48 h post-injury. In a follow-up (7 day) experiment, the 10-mg/kg bolus injections of DM were administered in conjunction with a 6-h infusion (5 mg/kg/h). DM bolus injections alone produced a dose-dependent improvement in motor recovery on a balance beam task at 3 days post-injury. However, more rapid recovery (24 h) was observed on this task when the bolus injections were combined with the 6-h infusion. Moreover, the DM bolus/infusion treatment regimen resulted in a significant (76%) improvement in cognitive performance in a novel object recognition (NOR) task at 7 days post-injury. Although post-injury administration of DM (all doses) failed to reduce core lesion size, the maximum dose of DM (10 mg/kg) was effective in reducing silver-stained axonal fiber degeneration in the cortical regions adjacent to the injury.
ISSN:0091-3057
1873-5177
DOI:10.1016/j.pbb.2009.07.006