A Two-Dimensional DNA Array: The Three-Layer Logpile

We describe the three-layer logpile (3LL), a two-dimensional DNA array which self-assembles from four synthetic oligonucleotides via a four-armed Holliday junction motif. It consists of three layers of helices, each running at 60° to the others. DNA arrays can be used as periodic templates to create...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2009-09, Vol.131 (38), p.13574-13575
Hauptverfasser: Malo, Jonathan, Mitchell, James C, Turberfield, Andrew J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe the three-layer logpile (3LL), a two-dimensional DNA array which self-assembles from four synthetic oligonucleotides via a four-armed Holliday junction motif. It consists of three layers of helices, each running at 60° to the others. DNA arrays can be used as periodic templates to create, for example, synthetic protein crystals: this array is designed to maximize structural order by ensuring that helices run continuously, without bending, through the structure. UV absorbance measurements show a rate-dependent hysteresis associated with the assembly of the 3LL. Negative-stain transmission electron microscopy (TEM) of 3LL samples shows that the arrays form extensive sheets (∼μm2) and a process of iterative correlation mapping and averaging of small subsets of digitized TEM micrographs yields an averaged projection image that is consistent with a computer-generated model of the crystal.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja9042593