Cell turnover and gene activities in sheep mammary glands prior to lambing to involution

Abstract Mammary glands are special tissue characterized by proliferation of the epithelium, during puberty and pregnancy and by programmed cell death, during involution. In this study, apoptosis was identified by TUNEL staining and then related to cell proliferation, as determined by Ki-67 staining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue & cell 2009-10, Vol.41 (5), p.326-333
Hauptverfasser: Colitti, M, Farinacci, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Mammary glands are special tissue characterized by proliferation of the epithelium, during puberty and pregnancy and by programmed cell death, during involution. In this study, apoptosis was identified by TUNEL staining and then related to cell proliferation, as determined by Ki-67 staining. The apoptotic index was at its highest at 8 days of involution, whereas the proliferation index was at its highest during lactation. Caspase-3 was immunolocalised only in mast cells and along the basal membrane in the mammary tissue at −10 days from lambing, 150 days of lactation and at 8 days of involution. This finding could indicate that caspase-3 is not involved in sheep mammary gland apoptosis, but that other proteins – such as apoptosis inducing factor (AIF) – can trigger apoptosis, through the mitochondrial pathway, in a caspase-independent manner. The expression of genes involved in the regulation of lactation and apoptosis was also investigated and determined relatively to −10 days from lambing. The relative expression level of LALBA, reached its maximum during lactation, whereas the expressions of BCL2, BCL2L1, BAX, STAT5A, STAT3, IGFBP5 and FOXO3A, increased significantly during involution in correlation with apoptotic index. This work shows for the first time the turnover of mammary cells and the interaction of their signals during the complete lactation cycle in sheep. The data on gene expression can contribute to elucidate the mechanisms controlling milk production and cell turnover in this species.
ISSN:0040-8166
1532-3072
DOI:10.1016/j.tice.2009.02.004