Prediction of the spin transition temperature in Fe(II) one-dimensional coordination polymers: an anion based database

One-dimensional (1D) coordination polymers of formula [Fe(NH(2)trz)(3)]A.nH(2)O, {A = TiF(6)(2-), n = 0.5 (1) and n = 1 (2); A = ZrF(6)(2-), n = 0.5 (3) and n = 0 (4); A = SnF(6)(2-), n = 0.5 (5) and n = 1 (6); A = TaF(7)(2-), n = 3 (7) and n = 2.5 (8); A = GeF(6)(2-), n = 1 (9) and n = 0.5 (10), NH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2009-08, Vol.48 (16), p.7838-7852
Hauptverfasser: Dîrtu, Marinela M, Rotaru, Aurelian, Gillard, Damien, Linares, Jorge, Codjovi, Epiphane, Tinant, Bernard, Garcia, Yann
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One-dimensional (1D) coordination polymers of formula [Fe(NH(2)trz)(3)]A.nH(2)O, {A = TiF(6)(2-), n = 0.5 (1) and n = 1 (2); A = ZrF(6)(2-), n = 0.5 (3) and n = 0 (4); A = SnF(6)(2-), n = 0.5 (5) and n = 1 (6); A = TaF(7)(2-), n = 3 (7) and n = 2.5 (8); A = GeF(6)(2-), n = 1 (9) and n = 0.5 (10), NH(2)trz = 4-amino-1,2,4-triazole} have been synthesized, fully characterized, and their spin crossover behavior carefully studied by SQUID magnetometry, Mossbauer spectroscopy, and differential scanning calorimetry. These materials display an abrupt and hysteretic spin transition around 200 K on cooling, as well as a reversible thermochromic effect. Accurate spin transition curves were derived by (57)Fe Mossbauer spectroscopy considering the corrected f factors for the high-spin and low-spin states determined employing the Debye model. The unusual hysteresis width of 3 (28 K), was attributed to a dense hydrogen bonding network involving the ZrF(6)(2-) counteranion and the 1D chains, an organization which is also revealed in [Cu(NH(2)trz)(3)]ZrF(6).H(2)O (11). Trinuclear spin crossover compounds of formula [Fe(3)(NH(2)trz)(10)(H(2)O)(2)](SbF(6))(6).S {S = 1.5CH(3)OH (12), 0.5C(2)H(5)OH (13)} were also obtained. A structural property relationship was derived between the volume of the inserted counteranion and the transition temperature T(1/2) of the 1D chains. Two linear size regimes were identified for monovalent anions (0.04
ISSN:1520-510X
DOI:10.1021/ic900814b